skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garnier, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Collective intelligence and autonomy of robot swarms can be improved by enabling individual robots to become aware that they are the constituent parts of a larger whole and to identify their role within the swarm. In this study, we present an algorithm to enable positional self-awareness in a swarm of minimalistic, error-prone, stationary robots which can only locally broadcast messages and estimate the distance from their neighbours. Despite being unable to measure the bearing of incoming messages, the robots running our algorithm can calculate their position within a swarm deployed in a regular formation. We show through experiments with up to 200 Kilobot robots that such positional self-awareness can be employed by the robots to create a shared coordinate system and dynamically self-assign location-dependent tasks. Our solution has fewer requirements than state-of-the-art algorithms and includes collective noise-filtering mechanisms. Therefore, it has an extended range of robotic platforms on which it can run. All robots are interchangeable, run the same code, and do not need any prior knowledge. Through our algorithm, robots reach collective synchronisation and autonomously become aware of the swarm’s spatial configuration and their position within it. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Marshall, James AR (Ed.)
    Despite almost a century of research on energetics in biological systems, we still cannot explain energy regulation in social groups, like ant colonies. How do individuals regulate their collective activity without a centralized control system? What is the role of social interactions in distributing the workload amongst group members? And how does the group save energy by avoiding being constantly active? We offer new insight into these questions by studying an intuitive compartmental model, calibrated with and compared to data on ant colonies. The model describes a previously unexplored balance between positive and negative social feedback driven by individual activity: when activity levels are low, the presence of active individuals stimulates inactive individuals to start working; when activity levels are high, however, active individuals inhibit each other, effectively capping the proportion of active individuals at any one time. Through the analysis of the system’s stability, we demonstrate that this balance results in energetic spending at the group level growing proportionally slower than the group size. Our finding is reminiscent of Kleiber’s law of metabolic scaling in unitary organisms and highlights the critical role of social interactions in driving the collective energetic efficiency of group-living organisms. 
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  3. Animal groups need to achieve and maintain consensus to minimize conflict among individuals and prevent group fragmentation. An excellent example of a consensus challenge is cooperative transport, where multiple individuals cooperate to move a large item together. This behaviour, regularly displayed by ants and humans only, requires individuals to agree on which direction to move in. Unlike humans, ants cannot use verbal communication but most likely rely on private information and/or mechanical forces sensed through the carried item to coordinate their behaviour. Here, we investigated how groups of weaver ants achieve consensus during cooperative transport using a tethered-object protocol, where ants had to transport a prey item that was tethered in place with a thin string. This protocol allows the decoupling of the movement of informed ants from that of uninformed individuals. We showed that weaver ants pool together the opinions of all group members to increase their navigational accuracy. We confirmed this result using a symmetry-breaking task, in which we challenged ants with navigating an open-ended corridor. Weaver ants are the first reported ant species to use a ‘wisdom-of-the-crowd’ strategy for cooperative transport, demonstrating that consensus mechanisms may differ according to the ecology of each species. 
    more » « less
  4. Abstract Mass behavior is the rapid adoption of similar conduct by all group members, with potentially catastrophic outcomes such as mass panic. Yet, these negative consequences are rare in integrated social systems such as social insect colonies, thanks to mechanisms of social regulation. Here, we test the hypothesis that behavioral deactivation between active individuals is a powerful social regulator that reduces energetic spending in groups. Borrowing from scaling theories for human settlements and using behavioral data on harvester ants, we derive ties between the hypermetric scaling of the interaction network and the hypometric scaling of activity levels, both relative to the colony size. We use elements of economics theory and metabolic measurements collected with the behavioral data to link activity and metabolic scalings with group size. Our results support the idea that metabolic scaling across social systems is the product of different balances between their social regulation mechanisms. 
    more » « less
  5. During their lifetime, superorganisms, like unitary organisms, undergo transformations that change the machinery of their collective behaviour. Here, we suggest that these transformations are largely understudied and propose that more systematic research into the ontogeny of collective behaviours is needed if we hope to better understand the link between proximate behavioural mechanisms and the development of collective adaptive functions. In particular, certain social insects engage in self-assemblage, forming dynamic and physically connected architectures with striking similarities to developing multicellular organisms, making them good model systems for ontogenetic studies of collective behaviour. However, exhaustive time series and three-dimensional data are required to thoroughly characterize the different life stages of the collective structures and the transitions between these stages. The well-established fields of embryology and developmental biology offer practical tools and theoretical frameworks that could speed up the acquisition of new knowledge about the formation, development, maturity and dissolution of social insect self-assemblages and, by extension, other superorganismal behaviours. We hope that this review will encourage an expansion of the ontogenetic perspective in the field of collective behaviour and, in particular, in self-assemblage research, which has far-reaching applications in robotics, computer science and regenerative medicine. This article is part of a discussion meeting issue ‘Collective behaviour through time’. 
    more » « less
  6. Abstract Collective motion, that is the coordinated spatial and temporal organisation of individuals, is a core element in the study of collective animal behaviour. The self‐organised properties of how a group moves influence its various behavioural and ecological processes, such as predator–prey dynamics, social foraging and migration. However, little is known about the inter‐ and intra‐specific variation in collective motion. Despite the significant advancement in high‐resolution tracking of multiple individuals within groups, providing collective motion data for animals in the laboratory and the field, a framework to perform quantitative comparisons across species and contexts is lacking.Here, we present theswaRmversepackage. Building on two existing R packages,trackdfandswaRm,swaRmverseenables the identification and analysis of collective motion ‘events’, as presented in Papadopoulou et al. (2023), creating a unit of comparison across datasets. We describe the package's structure and showcase its functionality using existing datasets from several species and simulated trajectories from an agent‐based model.From positional time‐series data for multiple individuals (x‐y‐t‐id),swaRmverseidentifies events of collective motion based on the distribution of polarisation and group speed. For each event, a suite of validated biologically meaningful metrics are calculated, and events are placed into a ‘swarm space’ through dimensional reduction techniques.Our package provides the first automated pipeline enabling the analysis of data on collective behaviour. The package allows the calculation and use of complex metrics for users without a strong quantitative background and will promote communication and data‐sharing across disciplines, standardising the quantification of collective motion across species and promoting comparative investigations. 
    more » « less
  7. Animals are often faced with time-critical decisions without prior information about their actions’ outcomes. In such scenarios, individuals budget their investment into the task to cut their losses in case of an adverse outcome. In animal groups, this may be challenging because group members can only access local information, and consensus can only be achieved through distributed interactions among individuals. Here, we combined experimental analyses with theoretical modeling to investigate how groups modulate their investment into tasks in uncertain conditions. Workers of the arboreal weaver ant Oecophylla smaragdina form three-dimensional chains using their own bodies to bridge vertical gaps between existing trails and new areas to explore. The cost of a chain increases with its length because ants participating in the structure are prevented from performing other tasks. The payoffs of chain formation, however, remain unknown to the ants until the chain is complete and they can explore the new area. We demonstrate that weaver ants cap their investment into chains, and do not form complete chains when the gap is taller than 90 mm. We show that individual ants budget the time they spend in chains depending on their distance to the ground, and propose a distance-based model of chain formation that explains the emergence of this tradeoff without the need to invoke complex cognition. Our study provides insights into the proximate mechanisms that lead individuals to engage (or not) in collective actions and furthers our knowledge of how decentralized groups make adaptive decisions in uncertain conditions. 
    more » « less
  8. Collective decision-making constitutes a core function of social systems and is, therefore, a central tenet of collective intelligence research. From fish schools to human crowds, we start by interrogating ourselves about the very definition of collective decision-making and the scope of the scientific research that falls under it. We then summarize its history through the lenses of social choice theory and swarm intelligence and their accelerating collaboration over the past 20 or so years. Finally, we offer our perspective on the future of collective decision-making research in 3 mutually inclusive directions. We argue (1) that the possibility to collect data of a new nature, including fine-grain tracking information, virtual reality, and brain imaging inputs, will enable a direct link between plastic individual cognitive processes and the ontogeny of collective behaviors; (2) that current theoretical frameworks are not well suited to describe the long-term consequences of individual plasticity on collective decision-making processes and that, therefore, new formalisms are necessary; and finally (3) that applying the results of collective decision-making research to real-world situations will require the development of practical tools, the implementation of monitoring processes that respect civil liberties, and, possibly, government regulations of social interventions by public and private actors. 
    more » « less
  9. Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog ( Xenopus laevis ) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects. The biological robots arise by cellular self-organization and do not require scaffolds or microprinting; the amphibian cells are highly amenable to surgical, genetic, chemical, and optical stimulation during the self-assembly process. We show that the xenobots can navigate aqueous environments in diverse ways, heal after damage, and show emergent group behaviors. We constructed a computational model to predict useful collective behaviors that can be elicited from a xenobot swarm. In addition, we provide proof of principle for a writable molecular memory using a photoconvertible protein that can record exposure to a specific wavelength of light. Together, these results introduce a platform that can be used to study many aspects of self-assembly, swarm behavior, and synthetic bioengineering, as well as provide versatile, soft-body living machines for numerous practical applications in biomedicine and the environment. 
    more » « less
  10. Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g. , the design of smarter materials, tissue engineering for biomedicine and in guiding active matter. 
    more » « less